The Comprehensive Guide to Metalworking Fluid (MWF)

21 Jul.,2025

 

The Comprehensive Guide to Metalworking Fluid (MWF)

P

Supporting our towns, cities, and transportation infrastructure, most large structures we see today are supported by steel frames. That’s because steel is non-combustible and is extremely durable and strong, making it a safe and reliable choice for buildings and infrastructure.

Xingyu supply professional and honest service.

  • Working with Steel

Steel is typically a metal that is very machinable, but as this is such a large metal group, there is some variation in machinability. Machining steel, as with all metals, is about striking the perfect balance between machining the workpiece as quickly as possible without generating too much heat and stress to the machine tool and part. With steel, a good indication that that balance has been achieved is when the steel chips are blue in color, indicating that not too much heat was generated but enough that the highest potential working speed was met.

  • Metalworking Fluid

Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

To find exactly the right metalworking fluid for your steel operation, contact Master Fluid Solutions here.

P

Supporting our towns, cities, and transportation infrastructure, most large structures we see today are supported by steel frames. That’s because steel is non-combustible and is extremely durable and strong, making it a safe and reliable choice for buildings and infrastructure.

  • Working with Steel

Steel is typically a metal that is very machinable, but as this is such a large metal group, there is some variation in machinability. Machining steel, as with all metals, is about striking the perfect balance between machining the workpiece as quickly as possible without generating too much heat and stress to the machine tool and part. With steel, a good indication that that balance has been achieved is when the steel chips are blue in color, indicating that not too much heat was generated but enough that the highest potential working speed was met.

  • Metalworking Fluid

Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

To find exactly the right metalworking fluid for your steel operation, contact Master Fluid Solutions here.

M

Stainless steel is extremely resistant to corrosion and strong acids and is used to create implements that need to be free of tarnishes such as medical instruments and kitchen utensils. There are five main groups of stainless steel, each with its own unique crystalline structure: austenitic, ferritic, martensitic, precipitation hardenable, and duplex. The different types within each group represent a unique composition of iron, carbon, chromium, and other materials. Esters, sulfur, and chlorine are great lubricity additives for stainless steel, especially when the metal is especially gummy.

  • Austenitic

Austenitic stainless steels are the most common group around the world, representing two-thirds of all stainless steel. The most commonly machined types are S304 and S316. Austenitic stainless steels vary from very gummy to easily machined. When it comes to choosing an MWF, we typically recommend one of our high-oil MicroSol microemulsions to accommodate austenitic stainless steel’s wide range of machinability.

  • Ferritic

The second most common stainless steels are ferritic stainless steels, with the most commonly used types being S409 and S430. Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

  • Martensitic

Less common and less corrosion-resistant than the austenitic and ferritic stainless steels, martensitic stainless steels are extremely hard, make very fine chips, and are abrasive. The most commonly used types of martensitic stainless steel are S416 and S420. When choosing an MWF for this type of metal, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

  • Precipitation Hardenable

Primarily used in aerospace and energy markets, precipitation hardenable stainless steels (or age-hardening steels) are extremely strong due to their crystalline structures. The most common types of precipitation hardenable stainless steels are 15-5PH and 17-4PH. This type of metal varies considerably from gummy to hard depending on the treatment. When machining precipitation hardenable stainless steels, we typically recommend using a MicroSol microemulsion with a high oil content.

  • Duplex

The rarest group of stainless steels are duplex stainless steels, the most common type being . This group of stainless steel combines the microstructures of austenitic and ferritic stainless steel at a ratio of around 50:50. This combination of the two crystalline structures gives it twice as much yield strength as austenitic stainless steel. However, this metal group is extremely difficult to machine. When choosing a MWF for duplex stainless steels, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

To find exactly the right metalworking fluid for your stainless steel operation, contact Master Fluid Solutions here.

M

Stainless steel is extremely resistant to corrosion and strong acids and is used to create implements that need to be free of tarnishes such as medical instruments and kitchen utensils. There are five main groups of stainless steel, each with its own unique crystalline structure: austenitic, ferritic, martensitic, precipitation hardenable, and duplex. The different types within each group represent a unique composition of iron, carbon, chromium, and other materials. Esters, sulfur, and chlorine are great lubricity additives for stainless steel, especially when the metal is especially gummy.

  • Austenitic

Austenitic stainless steels are the most common group around the world, representing two-thirds of all stainless steel. The most commonly machined types are S304 and S316. Austenitic stainless steels vary from very gummy to easily machined. When it comes to choosing an MWF, we typically recommend one of our high-oil MicroSol microemulsions to accommodate austenitic stainless steel’s wide range of machinability.

  • Ferritic

The second most common stainless steels are ferritic stainless steels, with the most commonly used types being S409 and S430. Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

  • Martensitic

Less common and less corrosion-resistant than the austenitic and ferritic stainless steels, martensitic stainless steels are extremely hard, make very fine chips, and are abrasive. The most commonly used types of martensitic stainless steel are S416 and S420. When choosing an MWF for this type of metal, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

  • Precipitation Hardenable

Primarily used in aerospace and energy markets, precipitation hardenable stainless steels (or age-hardening steels) are extremely strong due to their crystalline structures. The most common types of precipitation hardenable stainless steels are 15-5PH and 17-4PH. This type of metal varies considerably from gummy to hard depending on the treatment. When machining precipitation hardenable stainless steels, we typically recommend using a MicroSol microemulsion with a high oil content.

  • Duplex

The rarest group of stainless steels are duplex stainless steels, the most common type being . This group of stainless steel combines the microstructures of austenitic and ferritic stainless steel at a ratio of around 50:50. This combination of the two crystalline structures gives it twice as much yield strength as austenitic stainless steel. However, this metal group is extremely difficult to machine. When choosing a MWF for duplex stainless steels, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

To find exactly the right metalworking fluid for your stainless steel operation, contact Master Fluid Solutions here.

K

Cast iron is an iron alloy composed of around 96% iron, around 2% carbon, and 2% silicon as well as small amounts of other materials. Melted in a cupola furnace, the metal is poured into molds where it solidifies. Though not as tough as steel, cast iron is a rigid metal, is highly resistant to deformation, and is very absorbent to vibrations, making it a great material for infrastructure.

  • Working with Cast Iron

As a rigid metal, cast iron is not an easy metal to machine, quickly becoming hard, brittle, and unmalleable. When machining iron, typically very fine chips are produced that are dust-like in quality making the machining of this metal a rather messy process.

  • Metalworking Fluid

Cooling is key when it comes to choosing an MWF for cast iron machining operations. Lubrication is of far less importance due to the graphite contained in cast iron that makes this metal self-lubricating. Another important factor to consider when choosing a lubricant is finding one that doesn’t smut from graphite accumulation. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.

To find exactly the right metalworking fluid for your cast iron operation, contact Master Fluid Solutions here.

K

Cast iron is an iron alloy composed of around 96% iron, around 2% carbon, and 2% silicon as well as small amounts of other materials. Melted in a cupola furnace, the metal is poured into molds where it solidifies. Though not as tough as steel, cast iron is a rigid metal, is highly resistant to deformation, and is very absorbent to vibrations, making it a great material for infrastructure.

  • Working with Cast Iron

As a rigid metal, cast iron is not an easy metal to machine, quickly becoming hard, brittle, and unmalleable. When machining iron, typically very fine chips are produced that are dust-like in quality making the machining of this metal a rather messy process.

  • Metalworking Fluid

Cooling is key when it comes to choosing an MWF for cast iron machining operations. Lubrication is of far less importance due to the graphite contained in cast iron that makes this metal self-lubricating. Another important factor to consider when choosing a lubricant is finding one that doesn’t smut from graphite accumulation. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.

To find exactly the right metalworking fluid for your cast iron operation, contact Master Fluid Solutions here.

N

Nonferrous metals are metals that contain no iron, making them completely resistant to rust. These metals include aluminum, yellow metals, and magnesium-based alloys.

  • Aluminum and Aluminum Alloys

Used in household appliances, vehicles, and constructions, aluminum and aluminum alloys are typically gummy and need a lot of lubrication. When choosing an MWF, aluminums are best machined with straight oils, high-oil MicroSol microemulsions, and emulsions. Esters and chlorine are great lubricity additives for aluminum and when choosing a metalworking fluid for an aluminum alloy, be sure to choose a coolant that is compatible with the grading to avoid staining.

  • Yellow Metals

Yellow metals, including brass, bronze, copper, and copper-tin, are typically gummy and are difficult to machine. When machining copper and copper alloys, copper can accumulate in the metalworking fluid causing oil-based MWFs to split prematurely. In synthetics, this manifests itself as green-blue residue that will plate out and accumulate over your machine tool. When machining leaded yellow metals, avoid using chlorinated products as this can result in rock-hard residue. For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

  • Magnesium-based Alloys

Magnesium-based alloys are easy to machine. However, there are many hazards associated with machining this metal. Before applying any type of metalworking fluid to this flammable metal, contact Master Fluid Solutions.

To find exactly the right metalworking fluid for your nonferrous metal operation, contact Master Fluid Solutions here.

N

Nonferrous metals are metals that contain no iron, making them completely resistant to rust. These metals include aluminum, yellow metals, and magnesium-based alloys.

  • Aluminum and Aluminum Alloys

Used in household appliances, vehicles, and constructions, aluminum and aluminum alloys are typically gummy and need a lot of lubrication. When choosing an MWF, aluminums are best machined with straight oils, high-oil MicroSol microemulsions, and emulsions. Esters and chlorine are great lubricity additives for aluminum and when choosing a metalworking fluid for an aluminum alloy, be sure to choose a coolant that is compatible with the grading to avoid staining.

  • Yellow Metals

Yellow metals, including brass, bronze, copper, and copper-tin, are typically gummy and are difficult to machine. When machining copper and copper alloys, copper can accumulate in the metalworking fluid causing oil-based MWFs to split prematurely. In synthetics, this manifests itself as green-blue residue that will plate out and accumulate over your machine tool. When machining leaded yellow metals, avoid using chlorinated products as this can result in rock-hard residue. For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

  • Magnesium-based Alloys

Magnesium-based alloys are easy to machine. However, there are many hazards associated with machining this metal. Before applying any type of metalworking fluid to this flammable metal, contact Master Fluid Solutions.

To find exactly the right metalworking fluid for your nonferrous metal operation, contact Master Fluid Solutions here.

S

With high corrosion and creep resistance, superalloys, also known as high-performance alloys, are stronger and more durable than standard alloys, and are able to operate at a high fraction of their melting point. Being heat resistant makes them perfect for the aerospace and energy industries.

  • Superalloys

Two well-known brands of superalloy are Inconel® and Incoloy®, both of which are used primarily in the aerospace, automotive, energy, and naval industries. Superalloys are typically difficult to work with as they generate heat, are abrasive, get harder while being worked on, and can be sticky, creating built-up edge on the workpiece. Higher lubricity is typically recommended for super alloys including MicroSol microemulsions and emulsions. A chlorine additive can also be beneficial when machining superalloys, though chlorine additives are typically not permitted in aerospace manufacturing.

  • Titanium Alloys

With outstanding corrosion resistance, titanium alloys are used both in air and sea transportation industries as well as in the medical industry. Titanium is strong, light, and extremely heat resistant and is the metal of choice in air- and space crafts as well as missiles. This group of non-magnetic metal is also used for hip replacements and other medical and dental prosthetics and implants due to its durability. Not only is titanium a very expensive metal and therefore requires utmost care when machining, it is also very difficult to machine, losing only around 25% heat in the chips. The rest of the heat stays in the workpiece and the machine tool creating a very unique challenge when machining titanium - it needs a metalworking fluid that is both extremely lubricative and extremely cooling. To strike this perfect balance between lubricating and cooling, we recommend a MicroSol microemulsion.

To find exactly the right metalworking fluid for your superalloy operation, contact Master Fluid Solutions here.

S

With high corrosion and creep resistance, superalloys, also known as high-performance alloys, are stronger and more durable than standard alloys, and are able to operate at a high fraction of their melting point. Being heat resistant makes them perfect for the aerospace and energy industries.

  • Superalloys

Two well-known brands of superalloy are Inconel® and Incoloy®, both of which are used primarily in the aerospace, automotive, energy, and naval industries. Superalloys are typically difficult to work with as they generate heat, are abrasive, get harder while being worked on, and can be sticky, creating built-up edge on the workpiece. Higher lubricity is typically recommended for super alloys including MicroSol microemulsions and emulsions. A chlorine additive can also be beneficial when machining superalloys, though chlorine additives are typically not permitted in aerospace manufacturing.

  • Titanium Alloys

With outstanding corrosion resistance, titanium alloys are used both in air and sea transportation industries as well as in the medical industry. Titanium is strong, light, and extremely heat resistant and is the metal of choice in air- and space crafts as well as missiles. This group of non-magnetic metal is also used for hip replacements and other medical and dental prosthetics and implants due to its durability. Not only is titanium a very expensive metal and therefore requires utmost care when machining, it is also very difficult to machine, losing only around 25% heat in the chips. The rest of the heat stays in the workpiece and the machine tool creating a very unique challenge when machining titanium - it needs a metalworking fluid that is both extremely lubricative and extremely cooling. To strike this perfect balance between lubricating and cooling, we recommend a MicroSol microemulsion.

To find exactly the right metalworking fluid for your superalloy operation, contact Master Fluid Solutions here.

Machining metal is a metal removal process that encompasses many different operations:

  • Turning: While the part turns, a sharp tool makes a linear movement, making contact with the tuning part to shape it.
  • Surface milling: A rotating cutting tool comes into contact with the part, removing precise amounts of metal.
  • Drilling: A rotating cutting tool creates a hole in the part.
  • Threading: A tool is used to cut the thread around a part such as a screw.
  • Tapping: A rotating tool is used to create a thread in a part’s hole where another object can be screwed in.
  • Sawing: A toothed blade either rotates or moves backward and forwards cutting the workpiece.

When metalworking tools start to wear down, the end product may not meet tolerance specifications, and the machine itself may require repairs due to excessive spindle vibration. The right cutting fluid can increase tool life by 214% and improve the performance of metalworking machines by reducing friction, cooling and clearing the chip zone, curtailing corrosion, and cutting down on residue formation. In optimal conditions, using the right cutting fluid can even reduce tool wear at higher cutting speeds.

Here’s a breakdown of typical challenges manufacturers may face when using the wrong cutting fluid:

  • The problem with foam: Using the wrong metalworking fluid can create foam. If you have fine foam that looks like shaving cream, that’s caused mechanically by pumps or machines. Foam can be difficult to break up and run coolant out on the floor, creating a safety concern around the machine. The other problem caused by foam is that, if you try to cut with it, it will not carry the heat away from the tool and cause it to wear down faster.
  • Rusting machinery: Another problem that can arise with the wrong or low-quality metalworking fluid is that it can create rust on the machinery. Corrosion can form anywhere on the machine and also on the metal being machined.
  • Sticky switches: Poor metalworking fluid can also leave residue on the machine. This can cause the plates to get sticky and gum up the switches. If it gets really bad, the residue can build up in tool holders and the tools could fall out, slowing production, breaking inserts or drill tips on the tools, and potentially injuring workers.
  • Foul odors: While odors aren’t strictly related to machine performance, it does affect operator performance, which in turn impacts production. The odor might be caused by the metalworking fluid itself, or from the machining lubricants leaking into the coolant. Metalworking fluids tend to start smelling bad as it ages, not maintained properly, and as workers treat sumps poorly by using it as a substitute for a trash can or spittoon. The metalworking fluid used needs to resist contamination to prevent this performance issue.

Learn more about the range of MWF fluids we offer for your machining operation by clicking a metal below:

P Steel M Stainless Steel K Cast Iron N Nonferrous S Superalloys

Want to get your machining operation running cleaner, faster, and more efficiently? Click here to get in touch with your nearest distributor who will find just the right metalworking fluid for your operation.

Expand your knowledge while improving your bottom line - check out our selection of machining blog articles here.

Machining metal is a metal removal process that encompasses many different operations:

  • Turning: While the part turns, a sharp tool makes a linear movement, making contact with the tuning part to shape it.
  • Surface milling: A rotating cutting tool comes into contact with the part, removing precise amounts of metal.
  • Drilling: A rotating cutting tool creates a hole in the part.
  • Threading: A tool is used to cut the thread around a part such as a screw.
  • Tapping: A rotating tool is used to create a thread in a part’s hole where another object can be screwed in.
  • Sawing: A toothed blade either rotates or moves backward and forwards cutting the workpiece.

When metalworking tools start to wear down, the end product may not meet tolerance specifications, and the machine itself may require repairs due to excessive spindle vibration. The right cutting fluid can increase tool life by 214% and improve the performance of metalworking machines by reducing friction, cooling and clearing the chip zone, curtailing corrosion, and cutting down on residue formation. In optimal conditions, using the right cutting fluid can even reduce tool wear at higher cutting speeds.

Here’s a breakdown of typical challenges manufacturers may face when using the wrong cutting fluid:

  • The problem with foam: Using the wrong metalworking fluid can create foam. If you have fine foam that looks like shaving cream, that’s caused mechanically by pumps or machines. Foam can be difficult to break up and run coolant out on the floor, creating a safety concern around the machine. The other problem caused by foam is that, if you try to cut with it, it will not carry the heat away from the tool and cause it to wear down faster.
  • Rusting machinery: Another problem that can arise with the wrong or low-quality metalworking fluid is that it can create rust on the machinery. Corrosion can form anywhere on the machine and also on the metal being machined.
  • Sticky switches: Poor metalworking fluid can also leave residue on the machine. This can cause the plates to get sticky and gum up the switches. If it gets really bad, the residue can build up in tool holders and the tools could fall out, slowing production, breaking inserts or drill tips on the tools, and potentially injuring workers.
  • Foul odors: While odors aren’t strictly related to machine performance, it does affect operator performance, which in turn impacts production. The odor might be caused by the metalworking fluid itself, or from the machining lubricants leaking into the coolant. Metalworking fluids tend to start smelling bad as it ages, not maintained properly, and as workers treat sumps poorly by using it as a substitute for a trash can or spittoon. The metalworking fluid used needs to resist contamination to prevent this performance issue.

Learn more about the range of MWF fluids we offer for your machining operation by clicking a metal below:

P Steel M Stainless Steel K Cast Iron N Nonferrous S Superalloys

Want to get your machining operation running cleaner, faster, and more efficiently? Click here to get in touch with your nearest distributor who will find just the right metalworking fluid for your operation.

Expand your knowledge while improving your bottom line - check out our selection of machining blog articles here.

Grinding is another metal removal process that encompasses many different operations:

  • Plain grinding: Using an abrasive grinding wheel, grinding is a metalworking process that results in accurately sized parts.
  • Blanchard: When grinding oversized parts, a heavy-duty Blanchard machine is used to remove large amounts of metal, focusing on size over precision.
  • Form grinding: This involves using an abrasive grinding wheel that is shaped to grind the workpiece into the exact shape of the final part.
  • Form cylindrical Typically used in grinding operations for cylindrical parts, form cylindrical grinding uses a specialized grinding wheel shaped to fit the part.

Some of the most common challenges in grinding operations manifest as issues with workpiece surface finish, productivity, material costs, and tolerances. Regardless of the cause of these problems, simply upgrading to the right cutting and grinding fluid can dramatically improve grinding processes.

Here’s a breakdown of typical challenges manufacturers may face and how the right cutting fluid can combat them:

  • Poor or inconsistent surface finish: Grinding is often a part finishing process, and it can be difficult to pinpoint the exact cause of poor finish quality in a grinding operation since it could be caused by previous operations. Switching to higher-quality cutting fluid optimized for precision grinding operations can help alleviate many finish quality issues. Fluids with higher lubricity can help grinding wheels achieve a smoother, more polished finish. They also keep grinding wheels clean and minimize the need for wheel dressings.
  • Burning: Thermal damage, or burning, manifests in a variety of ways, including discoloration on the workpiece, surface distortions on the part, and even workpiece hardness. To avoid this threat to productivity, try switching to a cutting fluid with more advanced cooling and lubricity. With a high-performance grinding fluid, operators may be able to increase feed rates or depth of cut, both of which increase productivity.
  • Short wheel life: If the grinding wheel is too hard, too soft, or otherwise mismatched to the material being machined, the wheel could load up or break down faster, resulting in unnecessary machine downtime and higher consumable costs. The right grinding fluid is also essential to maximizing wheel life, as the wrong one could lack the necessary lubricity and cooling.
  • Short fluid life: Grinding operations can create a lot of swarf which can build up in the fluid tanks if not filtered properly. This swarf buildup can lead to bacteria issues and contaminate the grinding fluid quickly. Poor sump life also presents several productivity and material cost issues.

Learn more about the range of MWF fluids we offer for your grinding operation by clicking a metal below:

P Steel M Stainless Steel K Cast Iron N Nonferrous S Superalloys

Want to get your grinding operation running cleaner, faster, and more efficiently? Click here to get in touch with your nearest distributor who will find just the right metalworking fluid for your operation.

Expand your knowledge while improving your bottom line - check out our selection of grinding blog articles here.

Grinding is another metal removal process that encompasses many different operations:

  • Plain grinding: Using an abrasive grinding wheel, grinding is a metalworking process that results in accurately sized parts.
  • Blanchard: When grinding oversized parts, a heavy-duty Blanchard machine is used to remove large amounts of metal, focusing on size over precision.
  • Form grinding: This involves using an abrasive grinding wheel that is shaped to grind the workpiece into the exact shape of the final part.
  • Form cylindrical Typically used in grinding operations for cylindrical parts, form cylindrical grinding uses a specialized grinding wheel shaped to fit the part.

Some of the most common challenges in grinding operations manifest as issues with workpiece surface finish, productivity, material costs, and tolerances. Regardless of the cause of these problems, simply upgrading to the right cutting and grinding fluid can dramatically improve grinding processes.

Here’s a breakdown of typical challenges manufacturers may face and how the right cutting fluid can combat them:

  • Poor or inconsistent surface finish: Grinding is often a part finishing process, and it can be difficult to pinpoint the exact cause of poor finish quality in a grinding operation since it could be caused by previous operations. Switching to higher-quality cutting fluid optimized for precision grinding operations can help alleviate many finish quality issues. Fluids with higher lubricity can help grinding wheels achieve a smoother, more polished finish. They also keep grinding wheels clean and minimize the need for wheel dressings.
  • Burning: Thermal damage, or burning, manifests in a variety of ways, including discoloration on the workpiece, surface distortions on the part, and even workpiece hardness. To avoid this threat to productivity, try switching to a cutting fluid with more advanced cooling and lubricity. With a high-performance grinding fluid, operators may be able to increase feed rates or depth of cut, both of which increase productivity.
  • Short wheel life: If the grinding wheel is too hard, too soft, or otherwise mismatched to the material being machined, the wheel could load up or break down faster, resulting in unnecessary machine downtime and higher consumable costs. The right grinding fluid is also essential to maximizing wheel life, as the wrong one could lack the necessary lubricity and cooling.
  • Short fluid life: Grinding operations can create a lot of swarf which can build up in the fluid tanks if not filtered properly. This swarf buildup can lead to bacteria issues and contaminate the grinding fluid quickly. Poor sump life also presents several productivity and material cost issues.

Learn more about the range of MWF fluids we offer for your grinding operation by clicking a metal below:

P Steel M Stainless Steel K Cast Iron N Nonferrous S Superalloys

Want to get your grinding operation running cleaner, faster, and more efficiently? Click here to get in touch with your nearest distributor who will find just the right metalworking fluid for your operation.

Expand your knowledge while improving your bottom line - check out our selection of grinding blog articles here.

Due to their little to no oil content, synthetics leave very low residue for easy cleaning.

Paired with extremely low carryoff, synthetics translate to less maintenance and lower operational costs, saving you time and money. Semisynthetics are typically hard-water tolerant with good corrosion protection.

Types of Metal Typically Compatible with Synthetics

P Steel: Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

M Stainless Steel - Ferritic: Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

K Cast Iron: Cooling is key when it comes to choosing an MWF for cast iron machining operations. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.


Click here to see some of the products in our range of synthetics.

Due to their little to no oil content, synthetics leave very low residue for easy cleaning.

Paired with extremely low carryoff, synthetics translate to less maintenance and lower operational costs, saving you time and money. Semisynthetics are typically hard-water tolerant with good corrosion protection.

Types of Metal Typically Compatible with Synthetics

P Steel: Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

M Stainless Steel - Ferritic: Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

K Cast Iron: Cooling is key when it comes to choosing an MWF for cast iron machining operations. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.


Click here to see some of the products in our range of synthetics.

Semisynthetics can offer the cooling and lubricity of a synthetic without the higher oil content of an emulsion.

Designed to operate at higher SFPM (surface feet per minute), semisynthetics perform well on many operations including face milling, cut-off turning, grinding, tapping, and drilling. Semisynthetics are compatible with alloy steels, tool steels, cast irons, copper alloys, as well as plastics and composites. With less carryoff (meaning less MWF is carried away with the chips), semisynthetics use less material which all adds up to lower costs.

Types of Metal Typically Compatible with Semisynthetics

P Steel: Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

M Stainless Steel - Ferritic: Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

N Nonferrous - Yellow Metals: For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

K Cast Iron: Cooling is key when it comes to choosing an MWF for cast iron machining operations. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.


Click here to see some of the products in our range of semisynthetic metalworking fluids.

Semisynthetics can offer the cooling and lubricity of a synthetic without the higher oil content of an emulsion.

Designed to operate at higher SFPM (surface feet per minute), semisynthetics perform well on many operations including face milling, cut-off turning, grinding, tapping, and drilling. Semisynthetics are compatible with alloy steels, tool steels, cast irons, copper alloys, as well as plastics and composites. With less carryoff (meaning less MWF is carried away with the chips), semisynthetics use less material which all adds up to lower costs.

Types of Metal Typically Compatible with Semisynthetics

P Steel: Typically when machining steel, cooling is more important than lubrication, making a synthetic or semisynthetic the right choice of coolant depending on the hardness of the metal being worked.

M Stainless Steel - Ferritic: Ferritic stainless steels have a similar machining behavior to a steel alloy. When machining this metal, cooling is the primary concern. For that reason, we typically recommend a synthetic or low-oil semisynthetic coolant.

N Nonferrous - Yellow Metals: For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

K Cast Iron: Cooling is key when it comes to choosing an MWF for cast iron machining operations. We typically recommend a semisynthetic or low-oil synthetic when machining cast iron.


Click here to see some of the products in our range of semisynthetic metalworking fluids.

Microemulsions balance the best of both worlds - the lubricity of oil mixed with the cooling capabilities of synthetics - making them the best choice when it comes to precision parts manufacturing.

TRIM MicroSol microemulsions deliver high-performance lubricity and ultimately lower costs by providing higher precision to parts, exceptional tool life, extended sump life, assured regulatory compliance, and greater profitability. Designed to meet the rigorous demands of the aerospace, medical, automotive, and high production, precision parts manufacturing industries, there's a MicroSol microemulsion to answer your concerns, ramp up your production, and boost your bottom line.

Types of Metal Typically Compatible with Microemulsions

M Stainless Steel - Austenitic: When it comes to choosing an MWF, we typically recommend one of our high-oil MicroSol microemulsions to accommodate austenitic stainless steel’s wide range of machinability.

M Stainless Steel - Martensitic: When choosing an MWF for this type of metal, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

M Stainless Steel - Precipitation Hardenable: When machining precipitation hardenable stainless steels, we typically recommend using a MicroSol microemulsion with a high oil content.

M Stainless Steel - Duplex: When choosing a MWF for duplex stainless steels, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

N Nonferrous - Aluminum and Aluminum Alloys: When choosing an MWF, aluminums are best machined with straight oils, high-oil MicroSol microemulsions, and emulsions.

N Nonferrous - Yellow Metals: For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

S Superalloys: Higher lubricity is typically recommended for super alloys including MicroSol microemulsions and emulsions.

S Superalloys - Titanium Alloys: To strike the perfect balance between lubricating and cooling, we recommend a MicroSol microemulsion when working with titanium alloys..


Click here to see some of the products in our range of microemulsion metalworking fluids.


Microemulsions balance the best of both worlds - the lubricity of oil mixed with the cooling capabilities of synthetics - making them the best choice when it comes to precision parts manufacturing.

TRIM MicroSol microemulsions deliver high-performance lubricity and ultimately lower costs by providing higher precision to parts, exceptional tool life, extended sump life, assured regulatory compliance, and greater profitability. Designed to meet the rigorous demands of the aerospace, medical, automotive, and high production, precision parts manufacturing industries, there's a MicroSol microemulsion to answer your concerns, ramp up your production, and boost your bottom line.

Types of Metal Typically Compatible with Microemulsions

M Stainless Steel - Austenitic: When it comes to choosing an MWF, we typically recommend one of our high-oil MicroSol microemulsions to accommodate austenitic stainless steel’s wide range of machinability.

M Stainless Steel - Martensitic: When choosing an MWF for this type of metal, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

M Stainless Steel - Precipitation Hardenable: When machining precipitation hardenable stainless steels, we typically recommend using a MicroSol microemulsion with a high oil content.

M Stainless Steel - Duplex: When choosing a MWF for duplex stainless steels, we typically recommend a coolant with a higher oil content, such as one of our emulsions or MicroSol microemulsions.

N Nonferrous - Aluminum and Aluminum Alloys: When choosing an MWF, aluminums are best machined with straight oils, high-oil MicroSol microemulsions, and emulsions.

N Nonferrous - Yellow Metals: For occasional machining, MicroSol microemulsions and semisynthetics typically work well with yellow metals. If yellow metals are your primary metal, contact Master Fluid Solutions to receive specific recommendations.

S Superalloys: Higher lubricity is typically recommended for super alloys including MicroSol microemulsions and emulsions.

S Superalloys - Titanium Alloys: To strike the perfect balance between lubricating and cooling, we recommend a MicroSol microemulsion when working with titanium alloys..


Click here to see some of the products in our range of microemulsion metalworking fluids.


How long does the cleaning process last?

30 minutes of cleaning is likely to be more successful than 30 seconds.

For the most part, the longer you clean something, the cleaner it will be. When washing parts, this one factor can be very effective, immersing parts for a longer period can be a cost-effective way of getting them clean.

When it comes to cleaning out the machine however, time is something that is less available as machine downtime is very expensive. That’s where a high-quality cleaner comes in, minimizing downtime or even eliminating it completely by adding the cleaner while the machine is still running.

How long does the cleaning process last?

Want more information on Fluid Control Solutions? Feel free to contact us.

30 minutes of cleaning is likely to be more successful than 30 seconds.

For the most part, the longer you clean something, the cleaner it will be. When washing parts, this one factor can be very effective, immersing parts for a longer period can be a cost-effective way of getting them clean.

When it comes to cleaning out the machine however, time is something that is less available as machine downtime is very expensive. That’s where a high-quality cleaner comes in, minimizing downtime or even eliminating it completely by adding the cleaner while the machine is still running.

Is there some agitation involved?

Movement and agitation such as rubbing your hands together when you wash them help the cleaning process.

When cleaning parts, agitation is a great way to get the job done quickly. This can be done with a spray cleaner, spraying jets of soapy water at the parts to get them clean. This method of cleaning does involve an initial investment into a spray cleaner which may be costly, but for many plants, it is well worth the expense for the time it saves.

When it comes to machine cleaning, agitation may be in the form of a cloth, rag, brush, or a high-speed jet of water. It is however almost impossible to get in and scrub out all those hidden areas. Agitation alone therefore is not enough to get your machine completely clean.

Is there some agitation involved?

Movement and agitation such as rubbing your hands together when you wash them help the cleaning process.

When cleaning parts, agitation is a great way to get the job done quickly. This can be done with a spray cleaner, spraying jets of soapy water at the parts to get them clean. This method of cleaning does involve an initial investment into a spray cleaner which may be costly, but for many plants, it is well worth the expense for the time it saves.

When it comes to machine cleaning, agitation may be in the form of a cloth, rag, brush, or a high-speed jet of water. It is however almost impossible to get in and scrub out all those hidden areas. Agitation alone therefore is not enough to get your machine completely clean.

Do you use soap or only water?

Soap is a chemical but so is water. Using both is usually more beneficial than just one.

The chemicals added during the process are an important factor in cleaning parts and machines. Choosing the right cleaner can mean less time, agitation, and heat is needed to get parts clean, making the process far more efficient and cost-effective.

The same is true for machine cleaning, and it is vital to find a cleaner that strikes the balance between attacking the oils, bio-films, scums, and other nasty stuff quickly and at low temperatures without damaging the machines, machinists, or the parts being made.

Do you use soap or only water?

Soap is a chemical but so is water. Using both is usually more beneficial than just one.

The chemicals added during the process are an important factor in cleaning parts and machines. Choosing the right cleaner can mean less time, agitation, and heat is needed to get parts clean, making the process far more efficient and cost-effective.

The same is true for machine cleaning, and it is vital to find a cleaner that strikes the balance between attacking the oils, bio-films, scums, and other nasty stuff quickly and at low temperatures without damaging the machines, machinists, or the parts being made.

By flooding parts with the chemical cleaner, spray cleaning offers a fast, effective way to remove soil, coolant, and oil residue from a variety of metals, ranging from aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, to magnesium.

Like a dishwasher, high-pressure spray systems shoot powerful jets of heated solutions from all directions. Utilizing a mixture of water-soluble cleaners or solvents, temperature control, and force, unwanted debris is quickly and efficiently removed.

This type of system is ideal for less intricate parts — but items with complex geometries may present other challenges, as the high-pressure force of the jets may not reach every crevice, leaving contaminants behind to be washed again or cleaned by hand. However, some newer generation sprays feature pressure of upwards of 10,000 psi and washer jets specifically designed to reach into difficult-to-clean parts features.

In general, look for high-pressure spray washers that have several nozzles to reach the complete part, multiple stages such as wash, rinse, and dry, and enough power to remove heavy soils without affecting the metal they’re cleaning. Many cleaning fluids in the Master STAGES catalog offer superior tramp oil resistance, giving them a long sump life. Some products are suitable for use with a wide array of metals, but many are formulated for specific categories, both in terms of safety and providing effective cleaning. Some of our products are even formulated to remove heavy contaminants for applications like rebuild operations.

Master STAGES spray cleaners are specially tailored to do the job quickly, and effectively, with less makeup and no staining of parts. Master STAGES in-process spray cleaners are tough and fast-acting with very low V.O.C. and no SARA 313 reportable ingredients.

Offering increased life, good tramp oil rejection, low odor, low foam, low mist, and additional corrosion protection, highly-concentrated Master STAGES spray cleaners produce clean parts while reducing overall costs.

Click here to view our range of spray cleaners, or to get in touch with your nearest distributor who will find just the right spray cleaner for your operation, click here.

By flooding parts with the chemical cleaner, spray cleaning offers a fast, effective way to remove soil, coolant, and oil residue from a variety of metals, ranging from aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, to magnesium.

Like a dishwasher, high-pressure spray systems shoot powerful jets of heated solutions from all directions. Utilizing a mixture of water-soluble cleaners or solvents, temperature control, and force, unwanted debris is quickly and efficiently removed.

This type of system is ideal for less intricate parts — but items with complex geometries may present other challenges, as the high-pressure force of the jets may not reach every crevice, leaving contaminants behind to be washed again or cleaned by hand. However, some newer generation sprays feature pressure of upwards of 10,000 psi and washer jets specifically designed to reach into difficult-to-clean parts features.

In general, look for high-pressure spray washers that have several nozzles to reach the complete part, multiple stages such as wash, rinse, and dry, and enough power to remove heavy soils without affecting the metal they’re cleaning. Many cleaning fluids in the Master STAGES catalog offer superior tramp oil resistance, giving them a long sump life. Some products are suitable for use with a wide array of metals, but many are formulated for specific categories, both in terms of safety and providing effective cleaning. Some of our products are even formulated to remove heavy contaminants for applications like rebuild operations.

Master STAGES spray cleaners are specially tailored to do the job quickly, and effectively, with less makeup and no staining of parts. Master STAGES in-process spray cleaners are tough and fast-acting with very low V.O.C. and no SARA 313 reportable ingredients.

Offering increased life, good tramp oil rejection, low odor, low foam, low mist, and additional corrosion protection, highly-concentrated Master STAGES spray cleaners produce clean parts while reducing overall costs.

Click here to view our range of spray cleaners, or to get in touch with your nearest distributor who will find just the right spray cleaner for your operation, click here.

Immersion washers effectively remove residue from light to heavy soils, light rust, coolant, oil, drawing compounds, lubricants, waxy soil, and corrosion inhibitors by submerging the parts into a diluted cleaner.

Immersion cleaners operate on a principle similar to ultrasonic cleaners, except the agitation is caused by moving the workpieces themselves, or the flow of the cleaning fluid. Parts are immersed in a bath on top of a reciprocating or dunk-style platform. As the platform moves up and down or side to side, the drag against the cleaning solution generates friction that pulls dirt and other contaminants off the surface of the metal. This method doesn’t clean as quickly as ultrasonic machines, but it’s less expensive than the other cleaner styles, especially for larger parts and contaminants that may need to soak in the fluid to loosen the grime.

Various solutions can be used for immersion cleaning, but in general, you should look for versatile fluids designed to remove the toughest greases and oils. Highly concentrated cleaners are ideal for this, as they can be mixed at lower concentrations for reduced chemical usage.

Designed for cleaning aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, and magnesium and for multiple-metal situations, Master STAGES highly concentrated cleaners allow immersion washers to run at lower concentrations and lower temperatures with increased bath life, less foam, and added corrosion protection.

Environmentally friendly, and free of SARA 313 reportable ingredients, cost-effective Master STAGES immersion cleaners ensure exceptional parts cleaning while using less product and less energy - for a better bottom line.

Click here to view our range of immersion cleaning fluids, or to get in touch with your nearest distributor who will find just the right immersion cleaner for your operation, click here.

Immersion washers effectively remove residue from light to heavy soils, light rust, coolant, oil, drawing compounds, lubricants, waxy soil, and corrosion inhibitors by submerging the parts into a diluted cleaner.

Immersion cleaners operate on a principle similar to ultrasonic cleaners, except the agitation is caused by moving the workpieces themselves, or the flow of the cleaning fluid. Parts are immersed in a bath on top of a reciprocating or dunk-style platform. As the platform moves up and down or side to side, the drag against the cleaning solution generates friction that pulls dirt and other contaminants off the surface of the metal. This method doesn’t clean as quickly as ultrasonic machines, but it’s less expensive than the other cleaner styles, especially for larger parts and contaminants that may need to soak in the fluid to loosen the grime.

Various solutions can be used for immersion cleaning, but in general, you should look for versatile fluids designed to remove the toughest greases and oils. Highly concentrated cleaners are ideal for this, as they can be mixed at lower concentrations for reduced chemical usage.

Designed for cleaning aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, and magnesium and for multiple-metal situations, Master STAGES highly concentrated cleaners allow immersion washers to run at lower concentrations and lower temperatures with increased bath life, less foam, and added corrosion protection.

Environmentally friendly, and free of SARA 313 reportable ingredients, cost-effective Master STAGES immersion cleaners ensure exceptional parts cleaning while using less product and less energy - for a better bottom line.

Click here to view our range of immersion cleaning fluids, or to get in touch with your nearest distributor who will find just the right immersion cleaner for your operation, click here.

Ultrasonic parts washers - widely used in the medical, aerospace, automotive, mining, energy, and precision parts industries - provide superior cleaning performance to all parts, even those with complex geometries.

Once parts are submerged in a bath with an ultrasound-generating transducer, the high-frequency vibration produces microscopic “cavities” in the liquid around the parts creating agitation that scrubs off debris and contaminants. This method removes even the toughest debris, leaving a pristine surface finish.

Looking for ultrasonic cleaning solutions that have exceptional wetting ability will ensure parts are cleaned faster, which helps reduce cycle time. Plus, find products that rapidly split oils, bringing them to the surface during the cleaning process so that the contaminants can then be skimmed or removed off the top of the cleaner bath to extend fluid life.

Master STAGES specifically developed ultrasonic in-process cleaners are highly effective in removing dirt, oils, rust, bacteria, grease, drawing compounds, waxy soil, and other contaminants from a wide variety of metals including aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, or magnesium. Offering exceptional wetting ability, reduced cycle times, longer bath life, and faster, safer precision parts cleaning, yet are environmentally friendly and free of SARA 313 reportable ingredients, Master STAGES ultrasonic cleaners are the cost-effective solution to achieving a matchless surface finish.

Click here to view our range of ultrasonic cleaners, or to get in touch with your nearest distributor who will find just the right ultrasonic cleaner for your operation, click here.

Ultrasonic parts washers - widely used in the medical, aerospace, automotive, mining, energy, and precision parts industries - provide superior cleaning performance to all parts, even those with complex geometries.

Once parts are submerged in a bath with an ultrasound-generating transducer, the high-frequency vibration produces microscopic “cavities” in the liquid around the parts creating agitation that scrubs off debris and contaminants. This method removes even the toughest debris, leaving a pristine surface finish.

Looking for ultrasonic cleaning solutions that have exceptional wetting ability will ensure parts are cleaned faster, which helps reduce cycle time. Plus, find products that rapidly split oils, bringing them to the surface during the cleaning process so that the contaminants can then be skimmed or removed off the top of the cleaner bath to extend fluid life.

Master STAGES specifically developed ultrasonic in-process cleaners are highly effective in removing dirt, oils, rust, bacteria, grease, drawing compounds, waxy soil, and other contaminants from a wide variety of metals including aluminum, steels, cast iron, stainless steels, alloys, brass, bronze, copper, or magnesium. Offering exceptional wetting ability, reduced cycle times, longer bath life, and faster, safer precision parts cleaning, yet are environmentally friendly and free of SARA 313 reportable ingredients, Master STAGES ultrasonic cleaners are the cost-effective solution to achieving a matchless surface finish.

Click here to view our range of ultrasonic cleaners, or to get in touch with your nearest distributor who will find just the right ultrasonic cleaner for your operation, click here.

Integrating sustainability into every aspect of your business not only ensures long-term success, it also makes a positive impact on the world - something every company should be striving for. But being a sustainable company isn't something that happens overnight - it takes many little steps in the right direction to make it happen. Here are a few ways your company can become more sustainable:

  • Environmental responsibility: Recognizing the impact your company's operations have on the environment, and beginning to minimizing that impact. This includes reducing carbon footprint, conserving resources, and preventing pollution.
  • Innovation and efficiency: Finding creative solutions that improve efficiency, reduce waste, and drive sustainable growth.
  • Employee well-being: Creating a safe, inclusive, and supportive work environment that nurtures talent and fosters personal and professional growth.
  • Community engagement: Being responsible and contributing members of the larger community, and actively engaging with and giving back to the communities where you operate.
  • Transparency and accountability: Being accountable for sustainability goals and outcomes.

Choosing Master Fluid Solutions means creating a partnership with a company that prides itself on its sustainable solutions, taking you a step closer to your sustainability goals.

Want to learn more about how choosing our metalworking fluid is a sustainable choice? Speak to one of our experts at Master Fluid Solutions or contact your nearest distributor.

Expand your knowledge while improving your bottom line - check out our selection of blog articles about sustainability here.

Integrating sustainability into every aspect of your business not only ensures long-term success, it also makes a positive impact on the world - something every company should be striving for. But being a sustainable company isn't something that happens overnight - it takes many little steps in the right direction to make it happen. Here are a few ways your company can become more sustainable:

  • Environmental responsibility: Recognizing the impact your company's operations have on the environment, and beginning to minimizing that impact. This includes reducing carbon footprint, conserving resources, and preventing pollution.
  • Innovation and efficiency: Finding creative solutions that improve efficiency, reduce waste, and drive sustainable growth.
  • Employee well-being: Creating a safe, inclusive, and supportive work environment that nurtures talent and fosters personal and professional growth.
  • Community engagement: Being responsible and contributing members of the larger community, and actively engaging with and giving back to the communities where you operate.
  • Transparency and accountability: Being accountable for sustainability goals and outcomes.

Choosing Master Fluid Solutions means creating a partnership with a company that prides itself on its sustainable solutions, taking you a step closer to your sustainability goals.

Want to learn more about how choosing our metalworking fluid is a sustainable choice? Speak to one of our experts at Master Fluid Solutions or contact your nearest distributor.

Expand your knowledge while improving your bottom line - check out our selection of blog articles about sustainability here.

Composed of millions upon millions of parts, from minuscule screws in the control panel to the huge frames for the fuselage and wings, airplanes rely on metalworking plants to create parts that can be depended upon.

Here are some of the unique challenges faced in the aerospace industry:

  • Parts manufactured for the aerospace industry must be extremely precise and flawless.
  • Bound by strict regulations, all materials including the metalworking fluid used in aerospace production must be officially approved and meet local and internal health, safety, and environmental standards.
  • Coolants used in the aerospace industry must often meet the demands of high-pressure, high-volume applications.
  • Tool costs are a significant contributor to the overall component cost, especially for titanium and Inconel impellers so tool life savings are vitally important.

There are numerous ways Master Fluid Solutions supports companies in the aerospace industry:

  • Check out our product data sheets here to find all the aerospace approvals information critical to aerospace companies.
  • Our new class of neo-synthetic water-soluble metalworking fluids such as HyperSol 888NXT are specifically designed for machining harder metal alloys used in aerospace applications.
  • Many of our metalworking fluids extend tool life significantly, something that is highly important in the aerospace industry.

Click here to learn more about how Master Fluid Solutions can support your aerospace operation today.

Expand your knowledge while improving your bottom line - check out our selection of aerospace industry blog articles here.

Master Fluid Solutions is a proud alliance partner of the National Center for Defense Manufacturing and Machining (NCDMM).

This strategic partnership strengthens our commitment to advancing precision manufacturing and innovation in the aerospace industry. Through collaboration with NCDMM, we contribute to mission-critical initiatives that support the U.S. industrial base and deliver next-generation manufacturing solutions for national security applications.


Whether machining titanium, stainless, aluminum, exotics, or yellow metals - turning, drilling, boring, milling, or reaming - metal manufacturers are looking for ways of getting it done better, faster, and at a lower cost.

Here are some of the unique challenges faced in machining:

  • Machining operations often involve switching between parts and materials frequently.
  • For a wide range of applications, a robust MWF fluid is needed.
  • Machines may sit idle for extended periods.

There are numerous ways Master Fluid Solutions supports companies in the general machining industry:

  • Our coolants, such as MicroSol 692XT, are capable of providing excellent tool life on many different types of materials.
  • We offer fluids with extended sump life to minimize machine cleanouts and waste.

Click here to learn more about how Master Fluid Solutions can support your general machining company today.

Expand your knowledge while improving your bottom line - check out our selection of machining blog articles here.

Master Fluid Solutions is a proud alliance partner of the National Center for Defense Manufacturing and Machining (NCDMM).

This strategic partnership strengthens our commitment to advancing precision manufacturing and innovation across a broad range of manufacturing relevant to defense sectors. Through collaboration with NCDMM, we contribute to mission-critical initiatives that support the U.S. industrial base and deliver next-generation manufacturing solutions for national security applications.

Whether machining titanium, stainless, aluminum, exotics, or yellow metals - turning, drilling, boring, milling, or reaming - metal manufacturers are looking for ways of getting it done better, faster, and at a lower cost.

Here are some of the unique challenges faced in machining:

  • Machining operations often involve switching between parts and materials frequently.
  • For a wide range of applications, a robust MWF fluid is needed.
  • Machines may sit idle for extended periods.

There are numerous ways Master Fluid Solutions supports companies in the general machining industry:

  • Our coolants, such as MicroSol 692XT, are capable of providing excellent tool life on many different types of materials.
  • We offer fluids with extended sump life to minimize machine cleanouts and waste.

Click here to learn more about how Master Fluid Solutions can support your general machining company today.

Expand your knowledge while improving your bottom line - check out our selection of machining blog articles here.

Master Fluid Solutions is a proud alliance partner of the National Center for Defense Manufacturing and Machining (NCDMM).

This strategic partnership strengthens our commitment to advancing precision manufacturing and innovation across a broad range of manufacturing relevant to defense sectors. Through collaboration with NCDMM, we contribute to mission-critical initiatives that support the U.S. industrial base and deliver next-generation manufacturing solutions for national security applications.

As one of the strictest industries when it comes to the quality of parts, the medical industry has no space for error and producing medical parts involves meeting many industrial approvals.

Here are some of the unique challenges faced in the medical industry:

  • Stringent medical industry demands and cytotoxicity standards must be met.
  • Parts must be immaculate.
  • Manufacturing medical equipment typically involves difficult-to-machine materials and highly specialized parts

There are numerous ways Master Fluid Solutions supports companies in the medical industry:

  • Master Fluid Solutions helps customers navigate the complex fluid approval process. Speak to one of our technical experts today.
  • We offer products that are compliant with common medical industry regulations such as TRIM MicroSol 642RX.
  • Our metalworking fluids offer excellent tool life on difficult medical-grade materials.

Click here to learn more about how Master Fluid Solutions can support your medical manufacturing company today.

Expand your knowledge while improving your bottom line - check out our selection of medical industry blog articles here.

As one of the strictest industries when it comes to the quality of parts, the medical industry has no space for error and producing medical parts involves meeting many industrial approvals.

Here are some of the unique challenges faced in the medical industry:

  • Stringent medical industry demands and cytotoxicity standards must be met.
  • Parts must be immaculate.
  • Manufacturing medical equipment typically involves difficult-to-machine materials and highly specialized parts

There are numerous ways Master Fluid Solutions supports companies in the medical industry:

  • Master Fluid Solutions helps customers navigate the complex fluid approval process. Speak to one of our technical experts today.
  • We offer products that are compliant with common medical industry regulations such as TRIM MicroSol 642RX.
  • Our metalworking fluids offer excellent tool life on difficult medical-grade materials.

Click here to learn more about how Master Fluid Solutions can support your medical manufacturing company today.

Expand your knowledge while improving your bottom line - check out our selection of medical industry blog articles here.

Viscometers: A Buyer's Guide to Select the Perfect One

Manufacturers are responding with more substantial investment in viscosity control. Recent research by FMI shows that the global viscometer market is projected to grow from $285 million in to over $587 million by . This surge is driven by the need for lab automation, integrated data systems, and tighter control over production variables.

Accurate viscosity measurement improves product quality and speeds up formulation changes. It gives teams the data they need to adjust processes in real-time, reduce batch failures, and scale more efficiently, especially in regulated environments where consistency is critical. Let's take a closer look at viscometers and how to choose the ideal equipment for your R&D or production lab.

What Is a Viscometer, and Why Is It Important?

Viscometers are devices used to measure the viscosity of a liquid—its resistance to flow under specific conditions. Viscosity plays a central role in how materials are formulated, processed, and evaluated. It directly impacts product stability, application performance, and compliance with industry standards.

Used across R&D and production environments, viscometers monitor and control flow properties. They range from simple manual instruments to advanced digital systems capable of automated, high-precision measurements. Engineers, formulators, and quality control specialists rely on viscometers to validate product specifications, adjust formulations, and ensure batch-to-batch consistency.

Applications for viscometers (and viscosity measurement) span multiple industries:

  • In pharmaceuticals, viscosity affects drug stability, syringeability, and dosing accuracy.
  • In food and beverage, it influences mouthfeel, pourability, and texture.
  • In chemicals, viscosity governs the application and performance of coatings, adhesives, and lubricants.
  • In advanced materials, it supports the development of products with specialized flow and structural characteristics.

Some instruments, such as high-range rheometers, can measure viscosities from 10.5 to over 7.8 million centipoises (cP), which supports diverse formulations across demanding applications. Without reliable viscosity measurement, manufacturers risk product failure, process inefficiencies, and noncompliance with regulatory standards.

The Benefits of Using a Viscometer in R&D and Production

Viscometers offer many critical benefits, including:

  • Quality Control - Maintaining consistent viscosity is essential for uniform product performance. A viscometer helps detect deviations early, reducing variability between batches and preventing defects, recalls, and complaints.
  • Process Optimization - Monitoring viscosity under different conditions helps fine-tune formulations for better flow, coverage, and usability. This is especially important in coatings and adhesives, where application performance is viscosity-dependent.
  • Regulatory Compliance - Much like how AI systems must now adhere to standards like ISO for AI management and accountability, many industries follow strict viscosity specifications set by organizations such as ISO, ASTM, USP, or FDA. Accurate viscosity measurement ensures product quality meets regulatory expectations for safety and performance.
  • Cost Efficiency - Poor viscosity control leads to waste, rework, and excessive use of additives. Viscometers help optimize material use and reduce operational costs, especially when automated systems minimize manual intervention.
  • Data-Driven Decision Making - When integrated with lab tools like LIMS, ELN, or MaterialsZone's materials informatics platform, viscosity data becomes a strategic asset. AI-powered trend analysis helps teams detect anomalies, adjust formulations early, and drive continuous improvement.
  • Operational Efficiency - Modern viscometers with automation capabilities enable real-time monitoring and reduce manual testing. They accelerate decision-making and improve throughput in fast-paced lab and production environments.

Types of Viscometers

Choosing the right viscometer depends on the type of fluid being measured, the required level of precision, and the environment in which it's used. Here are the most common types and their typical applications:

8 Key Criteria for Choosing the Right Viscometer

Choosing a viscometer is not one-size-fits-all. Your choice should align with your materials, testing environment, and business needs. Use the following criteria to evaluate which instrument will deliver the precision, efficiency, and compliance that your workflow demands:

1. Fluid Type & Viscosity Range

Viscometers are designed for different viscosity levels and flow behaviors. Newtonian fluids (with constant viscosity) are suited for simpler tools like capillary viscometers, while non-Newtonian fluids require instruments that account for variable shear rates.

Example: A pharmaceutical lab working with aqueous drug formulations may rely on capillary viscometers, while a coatings manufacturer handling shear-thinning resins would need a rotational viscometer.

Buyer Tip: Identify whether your materials are Newtonian or non-Newtonian, and select a viscometer that can handle the expected viscosity range and flow characteristics.

2. Measurement Conditions (Temperature, Pressure, & Shear Rate Sensitivity)

Viscosity is highly sensitive to environmental factors. Some formulations require temperature-controlled or pressurized testing to reflect real-world use. For non-Newtonian fluids, the instrument must account for how viscosity changes under different shear conditions.

Example: A chemical R&D team evaluating synthetic lubricants would need a viscometer that operates under controlled thermal and pressure settings.

Buyer Tip: Consider any specific testing conditions your process requires, and choose a viscometer with built-in temperature or shear control capabilities as needed.

3. Accuracy & Repeatability Requirements

Accuracy refers to how close a reading is to the true value, while repeatability reflects consistency across multiple tests. Labs focused on compliance or product performance need instruments with minimal measurement variance.

Example: A lab preparing embryo culture media for IVF procedures must control viscosity precisely to ensure batch-to-batch consistency and maintain optimal conditions for embryo development. Precise lab processes like this are critical across IVF workflows, including advanced diagnostics such as ERA testing, where timing and biological conditions must be tightly controlled.

Buyer Tip: Review the instrument's published accuracy and repeatability specs to ensure they meet your quality thresholds—especially for batch release or regulated applications.

4. Sample Volume & Testing Frequency

Some viscometers require large sample volumes, which may not be feasible for rare or expensive materials. High-throughput environments benefit from instruments that can handle frequent testing efficiently.

Example: A food company testing multiple sauce formulations daily benefits from an automated rotational viscometer that processes samples quickly with minimal waste.

Buyer Tip: Choose an instrument that balances the required sample volume with your available material and testing frequency. Workflow automation may be essential in high-throughput labs.

5. Compliance & Industry Standards

Viscometers must support test methods recognized by industry and regulatory bodies to ensure data is valid for audits, filings, or certifications. Standards vary by sector and can dictate everything from testing methods to reporting format.

Example: A pharmaceutical company must use a viscometer compliant with USP <912> for drug formulation testing. In coatings and lubricants, standards like ASTM D or ISO are commonly required. For food and beverage, ISO outlines methods for kinematic viscosity.

Buyer Tip: Confirm that your viscometer complies with the specific standards relevant to your product and industry. Instruments that support multiple testing protocols may be necessary in regulated or multi-product environments.

6. Cost Considerations & ROI

While lower-cost viscometer models may offer basic functionality, they can increase operating costs through manual processes, calibration needs, or data handling inefficiencies. Higher-end models often reduce the total cost of ownership over time.

Example: A coatings manufacturer that upgraded to a digital rotational viscometer reduced formulation failures by 20%, cutting raw material waste and production delays.

Buyer Tip: Evaluate not just the purchase price, but long-term value—especially if automation or integration can reduce rework or improve throughput.

7. Maintenance & Calibration

Routine viscometer maintenance and calibration are necessary to ensure accuracy and compliance, but they also contribute to downtime. Some viscometers require frequent servicing, while others offer low-maintenance designs.

Example: A QC team in specialty chemicals chose a viscometer with automated calibration checks to maintain productivity and measurement consistency.

Buyer Tip: If uptime is critical, prioritize instruments with self-calibration features or minimal maintenance needs.

8. Integration & Data Connectivity

Modern R&D labs require viscometers that integrate seamlessly with LIMS (Laboratory Information Management Systems), ELNs (Electronic Lab Notebooks), and materials informatics platforms. Manual data entry increases the risk of transcription errors, slows decision-making, and creates gaps in traceability—especially in fast-paced or regulated environments.

MaterialsZone's materials informatics solution consolidates viscosity measurements from multiple instruments and sites into a centralized Materials Knowledge Center. The platform applies AI-powered analytics to identify anomalies, guide formulation improvements, and detect performance shifts. Automated documentation supports traceability, streamlines compliance, and eliminates the need for manual reporting across labs and production.

Example: A process development team selected a viscometer with native API support to feed data directly into their ELN and informatics platform—reducing data handling time and improving visibility across experiments.

Buyer Tip: Choose a viscometer that offers reliable integration with your digital lab infrastructure to maximize data value and maintain compliance readiness.

Streamline Viscosity Measurement from Lab to Production

Choosing a viscometer has a direct impact on product quality, development speed, and regulatory success. Every factor—from fluid behavior to data integration—shapes how effectively your lab can monitor and control viscosity across R&D and production. As materials and processes become more demanding, making the right equipment choice ensures your team can maintain precision under pressure.

MaterialsZone strengthens how labs manage and apply viscosity data across the product lifecycle. It centralizes measurements from multiple instruments, delivers AI-powered insights to optimize formulations, and automates documentation to support compliance. The platform reduces manual errors, accelerates decision-making, and improves overall operational efficiency.

The company is the world’s best Electro Pneumatic Valve supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.